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ABSTRACT  

The increasing use of renewable energy sources such as wind energy, bio-gas energy, solar energy, and hydro 

potential have become essential to adopt a low cost generating system, which are capable of operating in the remote areas, 

and in conjuction with the variety of prime movers. With wind turbines and mini/micro hydro generators as an alternative 

energy source, the induction generators are being considered as an alternative choice to well developed sysnchronous 

generators because of their lower unit cost, inherent ruggedness, operational and maintenance simplicity, absence of 

separate DC source, self-protection against overloads and short circuits etc. The research is underway to investigate the 

various issues related to the use of induction generator as potential alternative to the synchronous generator to utilize the 

small hydro and wind energy to accomplish the future energy requirement, and feed the power to remote locations and far 

flung areas, where extension of grid is not economically feasible. This paper presents an exhaustive survey of  literature of 

research on self-excited induction generator (SEIG) over the past 30 years so that further work can be carried out for better 

results. 

KEYWORDS: Mini-Hydro, Parallel Operation of SEIG, Renewable Energy Sources, Self-Excited Induction Generator, 

Steady-State Analysis, Transient Analysis, Wind Energy 

INTRODUCTION 

The increasing concern for the environment and resources has motivated the world towards rationalizing the use 

of conventional energy sources and has given emphasis on renewable energy sources such as wind, mini/micro-hydro, 

solar, geothermal, industrial waste etc. [1]. Since small hydro and wind energy sources are available in plenty, their 

utilization was felt quite promising to accomplish the future energy requirements. Harnessing mini/micro hydro and wind 

energy for electric power generation is an area of research interest and at present,  the emphasis is being given to the cost-

effective utilization of these energy resources for quality and reliable power supply [2]. With their limitations, a renewable 

energy power plant is installed locally and equipped with a small-size generator, up to only a few MW rating [3]. 

Traditionally, synchronous generators have been used for power generation but induction generators are increasingly being 

used these days because of their relative advantageous feature over conventional synchronous generators [4].  

The self-excited induction generator (SEIG) has attracted considerable attention due to its applicability as a stand-

alone generator using different conventional and non-conventional energy resources with its advantage over the 

conventional synchronous generator. Due to the research of renewable energy resources and isolated power systems, the 

SEIG become one of the most important renewable sources in developing countries [5]. It has its inherent advantages such 

as brushless construction with squirrel-cage rotor, reduced size, absence of DC power supply for excitation, reduced 

maintenance cost, and better transient performances. Major drawbacks of SEIG are reactive power consumption, its 

relatively poor voltage and frequency regulation under varying prime mover speed, excitation capacitor and load 

characteristics [6]. A detailed study of the performance of the SEIG operated in stand-alone and grid connected mode 
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during steady-state and various transient conditions is important for the optimum utilization of its advantageous features. 

This paper presents a survey of research presented by the researcher recently on self-excited induction generator. 

CLASSIFICATION OF INDUCTION GENERATORS 

The induction generators are simpler than synchronous generators. They are easier to operate, control, and 

maintain, do not have any synchronization problem and are economical. Depending upon the rotor construction induction 

generators are two types [7]:  (i) the wound rotor induction generator and (ii) the squirrel cage induction generator. On the 

basis of the prime movers used and their locations, generating schemes can be broadly classified in to two types [8]-[9]: (i) 

the constant-speed constant-frequency, (ii) the variable-speed constant-frequency, and (iii) the variable-speed variable-

frequency. 

Constant-Speed Constant Frequency 

T.S. Jayadev in [9] described that in this scheme, the prime mover speed is held constant by continuously 

adjusting the blade pitch and/or generator characteristics. An induction generator can operate on an infinite bus bar at a slip 

of 1% to 5% above the synchronous speed [10].  

Variable-Speed Constant Frequency 

Dezza et al. [11] presented that variable-speed operation of wind electric system yields higher output for both low 

and high wind speeds. This results in higher annual energy yields per rated installed capacity. Both horizontal and vertical 

axis wind turbines exhibit this gain under variable-speed operation. The popular schemes to obtain constant frequency 

output from variable speed are: (i) AC-DC-AC Link and (ii) Double output induction generator.  

The double output induction generator (DOIG) is described in literature [12]-[14]. It consists of a three-phase 

wound rotor induction machine that is mechanically coupled to either a wind or hydro turbine, whose stator terminals are 

connected to a constant voltage constant frequency utility grid. One of the outstanding advantages of DOIG in wind energy 

conversion systems is that it is the only scheme in which the generated power is more than the rating of the machine. 

However, due to operational disadvantages, the DOIG scheme could not be used extensively. 

Variable-Speed Variable Frequency 

For variable speed corresponding to the changing derived speed, SEIG can be conveniently used for resistive 

heating loads, which are essentially frequency insensitive. The application of this scheme for stand-alone wind power is 

presented in literature [15]-[16]. 

THREE PHASE SELF-EXCITED INDUCTION GENERATOR MODEL 

When an induction machine operates as a Self-excited induction generator (SEIG), there is no external power grid 

that defines voltage and frequency on the stator terminals. Thus, both of them are unknown variables whose values change 

independently, being affected by rotor speed, capacitance of excitation capacitors and loading conditions. Saturation level 

of the magnetic circuit is also variable, which means that magnetizing inductance cannot be considered constant [17]. 

Several different variants of SEIG’s equivalent circuit can be found in literature [18]-[20]. For the modeling of the self 

excited induction generator the main flux path saturation is accounted for while the saturation in the leakage flux path of 

magnetic core of the machine, the iron and rotational losses are neglected [21]-[22].  

Steady-State Circuit Model  

Most of the steady state models of SEIG developed by different researchers are based on per phase equivalent 
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circuit. These models use the following two basic methods: (i) Loop impedance method and (ii) Nodal admittance method. 

The steady state model based on nodal admittance method and used in [17] is presented here in Fig. 1. This model makes 

assumptions that the load is RL, machine core loss component is neglected and the machine parameters (except for 

magnetizing reactance) remain constant.  

 

Figure 1:  Equivalent Circuit of Self-Excited Induction Generator 

T.F. Chan in [23] presented a steady state model of SEIG in which all the circuit parameters are assumed to be 

constant and unaffected by saturation. Machine parameter except capacitance and frequency all are known values. 

Mahendra Lalwani et al. [24] proposed a steady state model of single phase self-excited induction generator with one 

winding for obtaining constant output voltage. D. Joshi et al. [25] presented conventional equivalent circuit model for 

steady state analysis of SEIG using artificial neural network. K.S. Sandhu et al. [26] proposed a model for steady state 

operation of self-excited induction generator with varying wind speeds. Jordan Radosavljevic et al. [27] proposed 

induction generator model with its positive and negative sequence circuits for steady-state analysis of parallel operated 

self-excited induction generators supplying an unbalanced load. Eduard Mujadi et al. [28] presented a model of 

asynchronous machine in terms of admittance using the steady state equivalent circuit. 

Mathematical Model 

For the machine to self-excite on load, the impedance line corresponding to the parallel combination of the load 

impedance and excitation capacitance should intersect the magnetization characteristic well in to the saturation region [29]. 

For the self-excitation of the machine on no load, the excitation capacitance must be larger than some minimum value, this 

minimum value decreases with decreasing speed [30]. For the circuit shown in Fig. 1, by using Kirchhoff’s current law, the 

sum of currents at node (1) should be equal to zero, therefore 

  

  Where Y is the net admittance given by  

  

  The terminal voltage cannot be equal to zero, therefore 

  

 By equating the real and imaginary terms in equation (3) respectively to zero, we have 
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M.H. Haque in [31] proposed a mathematical model of SEIG for determination of critical speed capacitance 

requirements in which core losses are modeled by adding resistor in parallel with magnetizing inductance. H.H. Hanafy et 

al. [32] presented a mathematical model of self-excited short-shunt induction generator driven by unregulated turbine 

under no load and on load conditions for voltage and frequency control. Analysis was done to choose appropriate set of 

values of both shunt and series capacitances to control the magnitude and frequency of the load voltage. M.H. Haque in 

[33] presented a simple method of evaluating the steady state characteristics of a three-phase SEIG with P-Q load model. 

First the problem of generator is formulated through its equivalent circuit using the basic circuit laws.  

The formulated problem is then solved using a numerical based routine. The proposed method is then tested on a 

1.5-KW machine. Bhaskara Palle et al. [34] proposed dynamic mathematical model to describe the transient behavior of a 

system of self-excited induction generators operating in parallel and supplying a common load. Sasikumar et al. [35] 

presented a simple mathematical model to compute the steady-state performance of six-phase self-excited induction 

generators. A mathematical model is formed directly from the equivalent circuit of six-phase self-excited induction 

generator by nodal admittance method. Genetic algorithm is applied to solve the proposed model. The model of induction 

machine with D-Q axes equivalent circuit has been reported in literature [36]-[39]. 

PERFORMANCE ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR 

The performance analysis of self-excited induction generator may be discussed by categorizing in to four 

important headings viz: (i) steady-state analysis, (ii) the transient analysis, (iii) the voltage control aspects, and (iv) the 

parallel operation of SEIG. 

Steady- State Analysis 

In an isolated power system, both the terminal voltage and frequency are unknown and have to be computed for a 

given speed, capacitance and load impedance. Therefore the steady-state analysis of self-excited induction generator is of 

great interest, both from the design and operational points of view. 

Harish Kumar et al. [40] presented the steady state performance of SEIG with genetic algorithm, pattern search 

and quasi-newton optimization techniques. At given load, speed and terminal voltage two unknowns i.e., p.u. capacitive 

reactance and frequency are determined. The steady state equivalent circuit is used to compute the performance of SEIG 

after determining the unknowns.  

The effects of various system parameters are presented. Wang et al. [41] have presented an eigenvalue-based 

approach to predict both minimum and maximum values of capacitance required for self-excitation of SEIG. Muthy et al. 

[42] presented a general steady-state analysis of a three-phase self-excited induction generator feeding a three-phase 

unbalanced load or single-phase load. Symmetrical component theory is used to obtain relevant performance equations 

through sequence quantities.  

The feasibility of using three-phase machines for unbalanced operations has been critically examined for stand-

alone power generation. B. Singh et al. [43] predicted the steady-state performance of the two-winding single-phase SEIG 

and verified with experimental results for three different schemes, namely; fixed-shunt capacitor excitation, fixed and 

variable capacitor excitation, shunt- and series-capacitor excitation.  

Rajakaruna et al. [44] have used an iterative technique which uses an approximate equivalent circuit and a 

mathematical model for B-H curve and the solution is reduced to a nonlinear equation. 
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Transient Analysis 

The transient studies of induction generators are related to voltage buildup due to self-excitation and load 

perturbations. The D-Q model can be used to investigate the SEIG transient performance under balanced condition. The 

literature [45]-[48] have presented transient/dynamic analysis of self-excited induction generator. 

 Hamouda et al. [49] presented a transient model of a stand-alone self-excited induction generator. This model is 

based on direct phase quantities and is suitable to study the performance of the generator under any condition. It includes a 

general load as well as general excitation capacitor model. Shridhar et al. [50] presented the transient performance of short-

shunt SEIG. It is seen that it can sustain severe switching transients, has good overload capacity, and can re-excite over no 

load after loss of excitation.  

It is also observed that except for the most unusual circumstances, the short-shunt SEIG supplies adequate fault 

current to enable over-current protective device operation. Wang et al. [51] presented transient performance of a stand-

alone self-excited induction generator under unbalanced excitation capacitors. An approach based on three-phase induction 

machine model is employed to derive dynamic equations of an isolated SEIG under unbalanced conditions. The neutral 

points of both Y-connected excitation capacitor bank and Y-connected stator windings of the SEIG are connected together 

through a neutral line.  

Wang et al. [52] have presented a comparative study of long-shunt and short-shunt configurations on dynamic 

performance of an isolated SEIG feeding an induction motor load. Results show that the long shunt configurations may 

lead to unwanted oscillations while the short shunt provides the better voltage regulation. In [53], the permanent and 

dynamic behaviours of self-excited induction generator in balanced mode are discussed. The effects of varying the resistive 

load, the excitation’s capacitors and the drive speed on the stator output voltage are also presented. 

Voltage-Control Aspects 

The induction machine has no field windings; therefore the current to magnetize the machine must be supplied by 

the system to which it is connected. The need of reactive power support and poor voltage regulation are the two major 

drawbacks of induction generators. Induction generators require the supply of reactive power [54]. Depending upon the 

arrangement to supply the reactive power, two modes of operation are possible for an induction generator i.e. regeneration 

and self-excitation. In first mode, the induction generator takes its excitation in terms of lagging magnetizing current from 

the power source of known voltage and frequency i.e. grid, to produce its rotating air gap field for required regeneration. In 

second mode, the VAR generating unit has to be connected across the terminals of induction machine, which are generally 

realized in the form of capacitor banks [55]. 

Malik et al. [56] have shown that the minimum capacitance requirement of SEIG is inversely proportional to the 

square of speed and maximum saturated magnetizing reactance. Swati Devabhaktuni et al. [57] presented a method for 

computing the minimum value of capacitance to initiate self-excitation in the SEIG. The method is based on the steady 

state equivalent circuit, but features the separate consideration of the load and excitation capacitance branches, which 

enables the frequency to be determined by solving a single 4
th

 order polynomial.  

Elsharkawi et al. [58] presented a fixed and switched capacitors scheme consisting of two discrete groups of fixed 

and switched capacitors, which furnish enough reactive power for an induction generator throughout its desired operating 

region of speed. The number of switched capacitors is kept to a minimum to simplify the switching circuit, and yet 

provides adequate and varying reactive power compensation. 
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Parallel Operation of SEIG 

The self-excited induction generators usually operate in parallel where natural resources are available in 

abundance to utilize full potential of the natural resources. Parallel operation of induction generators has the advantage of 

elimination of the need for synchronization and of the associated problems with hunting etc. The references [59]-[61] are 

available on parallel operation of such units. 

Chakraborty et al. [62] have analyzed the effects of parameter variations on the performance of parallel-connected 

SEIG operating in stand-alone mode. The investigation outlines the parameter influence on the performance of individual 

generators as well as on the system as a whole. Effects of parameter deviations on the voltage regulation have been 

examined in this paper. Rotor resistance is found to have the largest influence on current and power sharing of individual 

machines and also on terminal frequency. Yun et al. [63] presented a new methodology to analyze the parallel operation of 

single-phase self-excited induction generators in a distribution system. The model is then employed by analyzing starting 

currents and short circuit currents contributions from the SEIGs. The method of analysis in [60] is based on a simplified 

equivalent circuit, and as a result the developed expressions lack accuracy in certain situations, and also fail to meet the 

requirements to study many aspects of parallel connected generators. Bahrani et al. [64] studied the voltage-control 

behavior of multi-induction generators operating in parallel with one three-phase bank of excitation capacitors connected to 

a common bus and load. It has been reported that voltage regulation under varying load conditions is improved by 

controlling either the capacitance or speed of one or more generators. Under controlled terminal voltage operation, it is 

noticed that the capacitive reactive power and speed demand increases with increased load. Under the similar conditions of 

controlled terminal voltage, the system frequency also depends on load power and terminal voltage. 

CONCLUSIONS 

Applications of self-excited induction generator for energy conversions in remote locations offer many advantages 

over a synchronous generator. The SEIG is most economical solution for powering customers isolated from the utility grid. 

This article have presented a comprehensive literature survey on important aspects of SEIG such as the process of self-

excitation, modeling, steady-state and transient analysis, reactive power/voltage control, and parallel operation useful for 

the researchers. The better methods of reactive power/voltage control techniques will make the SEIG more suitable for 

isolated applications. 
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